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INDICES / SURDS / LOGARITHMS / EULER’S NUMBER
INDEX LAWS
SURD LAWS
LOGARITHM LAWS am×an = am+n am ÷ an = am−n
√a×√b = √ab √a×√a = a
ax = y → x = log
a
a0 = 1 a
√a ÷ √b = √
(y)
ex = y → x = log
e
log
a
(xy) = log
a
(x) + log
a
(y)
log
a
(
x y
) = log
a
(x) − log
a
(y)
EULER’S NUMBER
e = 2.718281828...
m n
= (√a n )
m
a
m√a ± n√a = b
(m ± n)√a (am)n = am×n (ab)m = ambm
RATIONALISING A SURD
x = log
e
(y)
(y) → x = ln(y)
EXPONENTIAL LAWS
log
a
(x)n = nlog
a
(x) CHANGING LOG BASE (B TO A)
lim h→0
(
ah h
− 1
) = ln(a)
(
a b
)
m
=
am bm
a−m =
1
√a 1
=
√a 1
×1 =
√a 1
×
√a √a
=
√a a
log
a
(1) = 0 → a0 = 1
log
(x) =
log
b
(x)
lim
(
eh − 1
) =1 R
am
log
a
(a) = 1 → a1 = a
a
log
b
(a)
h→0
h
S
APPLICATIONS OF CALCULUS
EXPRESSING DERIVATIVES
Type 1st Derivative 2nd Derivative
y = ⋯
dy dx
= ⋯
d2y dx2
= ⋯
f(x) = ⋯ f′(x) = ⋯ f′′(x) = ⋯
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LOGARITHM FORMULA
y = log
a
( x − b ) + c
For logarithm curves, there is a condition that a > 1 whereas b and c can take on any value.
x-intercept @ (−1.5,0) Vertical Asymptote @ x = −2
Solve the equation for x: log
2
Let x = log
5
(2) and
(b) log
5
(60) (x) + log
2
(x − 2) = 3
y = log
5
(3). In terms
= log
5
(5×22×3) log
2
of x and y, find:
= log
5 (a) log
5
Let A = 50log
10
(
35 B
). How
(x2 − 2x) = 3 x2 − 2x = 23 = 8
+ log
5 x2 − 2x − 8 = 0
(5) + 2log
5
(2)
many times greater is B if A is 150 than if A is 250? When A is 150:
(x − 4)(x + 2) = 0
Solve: 150 = 50log
10 x = 4 or − 2
(18)
(3) = 1 + 2x + y = log
5
(2×32) = log
5
(2) + 2log
5
(3) = x + 2y
(c) log
8
(3) =
log log
5
5
y
B = 35,000
(
35 B
) (3) (8)
=
log
log
5
5
(23) (3)
=
3x
NATURE OF TURNING POINTS
Type f′(x) f′′(x)
Minimum (Convex) 0 +
Maximum (Concave) 0 −
Horizontal Inflection Point 0 0
Vertical Inflection Point + − 0
FIND POINT WITH A GIVEN GRADIENT diff(f(x))|x = x co − ord Where:
• diff is found in Main App → Action → Calculation
• | is found in Keyboard → Math3
• x co − ord is the x co-ordinate of the point given.
SKETCHING DERIVATIVES
• All local maximum and minimums are x-intercepts on the derivative.
• Where the function is increasing, the derivative is above the x-axis.
• Where the function is decreasing, the derivative is below the x-axis.
• Where there is a point of inflection on the graph (vertical or horizontal), the derivative has a maximum or minimum turning point.
FIND GRADIENT OF A POINT solve(diff(f(x))) = gradient f(ans) Where:
• solve is found in Main App → Action → Advanced
• 1st answer gives the x co-ord and 2nd answer gives y co-ord.
Find the approximate change in y when x changes from 3 to 2. 98 in the equation: y = 3x2 − 2x δy δx δy ≈ ≈
dy dx dy dx
×δx
y = 3x2 − 2x dy dx
= 6x − 2
δy ≈ (6x − 2)×δx δy ≈ (6(3) − 2)×(−0.02) δy ≈ −0.32 ∴ decrease by 0.32
Determine the equation of the tangent to f(x) = ln(5) + x2e at the point f(x) = e.
Step 1: Find f′(x) f′(x) = 2ex
Step 2: sub x = e into f’(x) f’(e) = 2e(e) = 2e2 2e2 = m in y = mc + c
Step 3: Determine the y co-ord when x = e f(e) = ln(5) + e3
Log graphs have a vertical asymptote at x = b.
When b = 0 and c = 0, the x-intercept of the curve is at (1,0).
The radius of a sphere increases from 15cm to 15. 1cm, what is the approx increase in surface area? δS δr δS ≈ ≈
dS
dS dr
dr
×δr
S = 4πr2 dS dr
= 8πr
δS ≈ (8πr)×δr δS ≈ (8π(15))×(0.01) δS ≈ 3.77 ∴ increase by 3.77cm2
( a → 1 Makes curve steeper
Given y = log
a
x − 3 )
a → ∞ Makes curve shallower b > 0 Shift curve right by b b < 0 Shift curve left by b
and (84,4) is a point on the line, find the value of a. y = log
a
c > 0 Shift curve up by c c < 0 Shift curve down by c
( x − 3 ) 4 = log
a
( 84 − 3 ) 4 = log
a
( 81 ) a = 3
If Y = log(X), find the ratio of A:B if A is Y when X is 84000 and B is Y when X is 21000000.
A:B =
7.3222 4.9242 = 1.4870 ∴ A:B = 1:1.4870
INFLECTION TYPES
• A vertical point of inflection has a gradient (1st derivative) not equal to 0 and has a 2nd derivative equal to 0. Shown on the right:
• A horizontal point of inflection has a gradient (1st derivative) of 0 and also has a 2nd derivative equal to 0. Shown on the right:
B A
=
=
log(21000000) log(84000)
DIFFERENTIATION RULES
RATES OF CHANGE Type Equation 1st Derivative
• Instantaneous rate of
Product Rule
y = uv
dy dx
= u′v + uv′
change @ time = t: f'(t)
• Average rate of change
Quotient
between a and b: Rule
u v
u′v − uv′
f(b)−f(a) b−a v2
• Net change in f(x) Chain
between a and b: Rule
∫ |f′(x)|dx y =
dy dx
=
y = [f(x)]n
dy dx
= n[f(x)]n−1×f′(x)
D
b a
FINANCE FORMULAE
• Profit Formula: P(x) = R(x) − C(x)
• Revenue Formula: R(x) = p(x)q(x)
• Average Cost:
C(x) x
y is positive for all x that is greater than −1. The TP @ x = 1 is a max as the 2nd derivative is negative and the TP @ x = 2 is a min as the 2nd derivative is positive.
Determine the co-ordinates of the second maximum point of f(x) = 2sin(3x) for 0 ≤ x ≤ π f′(x) = 6cos (3x). Solving for x = 0: x = 0.5236,1.5708,2.6180 f′′(x) = −18sin (3x), using 2nd derivative test, 2nd max @ (2.6180,2)
Step 4: Solve for c in y = mx + c, substituting in values for y, m and x
y = mx + c ln(5) + e3 = 2e2(e) + c c = ln(5) − e3
SECOND DERIVATIVE AT A POINT diff(diff(f(x))) |x = x co − ord Where:
• Answer gives the value of the second derivative at the point.
f(x)
f′(x) S
Step 5: present the equation of the tangent
y = mx + c m = 2e2 c = ln(5) − e3 y = 2xe2 − e3 + ln (5)
Find the approximate change in y when x changes from 1 to 1. 1 in the equation: y = sin(2x) + e3x δy δx
≈
dy dx
y = sin(2x) + e3x
δy ≈
dy dx
×δx
dy dx
= 2cos(2x) + 3e3x
δy ≈ (2cos(2x) + 3e3x)×δx δy ≈ 2cos(2(1)) + 3e3(1)×(0.1) δy ≈ 5.94 ∴ increase by 5.94
EQUATION OF THE TANGENT tanLine(f(x),x,x co − ord)
Where:
• tanLine is found in Main App → Calculation → line
• Answer is the linear equation of the tangent in the form of y = mx + c
( y = log
2
x − a ) + b is below. Find a and b.
When A is 250: Solve: 250 = 50log
10
)
B = 3,500,000 Determining the Factor:
=
B B
A=250
A=150
3500000 L
=
35000
= 100
Sketch f(x)
a graph and its derivative with the following features:
• y ≥ 0 for x ≥ −1
• dy/dx = 0 for x = 1, 2
f′(x)
• d2y/dx2 > 0 for x = 2
• d2y/dx2 < 0 for x = 1
For f(x) =
cos(x) 2x+2
, find f′(π).
f′(x) =
(− sin(x))(2x+2)−(cos(x))(2) (2x+2)2 f′(x) =
2(−sin(x))(x+1)−2cos (2x+2)2
(x)
f′(π) =
2(π+1)2 1
CO-ORDS OF A TURNING POINT solve(diff(f(x))) = 0 f(ans) Where:
• solve is found in Main App → Action → Advanced
• 1st answer gives the x co-ord and 2nd answer gives y co-ord.
The vertical asymptote @ x = −2 means that a = −2 ∴ y = log
2
( x + 2 ) + b
0 = log
2
(−1.5 + 2 ) + b −b = log
2
(0.5 ) ⟹ b = 1
∴ y = log
2
( x + 2 ) + 1
(
B 35
The radius of a sphere increases by 2%, find the % increase in the volume.
V dV
=
4 3
πr3
dr
δV ≈ 4πr2×δr
= 4πr2
δV V
≈
4πr2δr V
δV
δV V
≈ 3×
δr r
δV δr
≈
dV dr
δV V
≈
4πr2δr 4πr3/3 δV
3δr
V
≈ 3×2%
δV ≈
dV dr
V
≈
r
δV V
≈ 3×6%
×δr
∴ increase by 6%
COMMON DERIVATIVES
Equation 1st Derivative
y = axn
dy dx
= n×axn−1
y = ef(x)
dy dx
= f′(x)×ef(x)
y =
1 x
= x−1
dy dx
−1 x2
= −x−2
y = ±sin(x)
=
dy dx
= ±cos(x)
y = ±cos(x)
dy dx
= ∓sin(x)
y = ln[f(x)]
dy dx
f′(x) f(x)
y = ax
=
dy dx
= ln (a)×ax

APPLICATIONS OF CALCULUS
F
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GROWTH & DECAY
• A = A
0
What is the half-life of the ekt
following equation that
• Where:
dA dt
= kA
0
ekt = kA
tracks radioactivity of a substance: A = 800e−0.04t?
• A
0
A = 800e−0.04t 400 = 800e−0.04t t = 17.33 days
OPTIMISATION STEPS Step 1: Draw a diagram of the scenario and define all variables. Step 2: Only 2 variables can be used to optimise a problem, if there are more than 2 variables, reduce the number of variables by substitution and simplification. Step 3: Determine the derivative: diff(f(x)) Step 4: Determine the x co-ord(s) of the turning point(s): solve(diff(f(x))) = 0 Step 5: Determine the nature of the turning point(s): diff(diff(f(x)))|x = x co − ord
(a) If dA/dt = 0. 252A is an exponential equation, find the initial value for A given that
→ Initial (starting) amount
• k → continuous rate of change
• A → amount @ time t
A @ time = 10 is 565. A = A
0
ekt → 565 = A
0
e0.252(10) 565/A
0
HALF LIFE Time taken for amount to reduce by 50% (i.e. A = 0.5A
0
= e3.82 = 45.60
RELATIONSHIP BETWEEN TYPES OF MOTION
Where:
• a → acceleration
• v → velocity
• s → displacement
).
= A
0
e0.252(10) ln(565/A
0
) = 0.252(10) ln(565) − ln(A
0
) = 2.52 ln(A
0
) = ln(565) − 2.52 = 3.82 A
0
Note: repeat step 5 for each x co-ord found in step 4.
• If
2y
• If
d dx2 2y
> 0 → TP is a min
• If
d dx2 2y
< 0 → TP is a max
of d
dx2 inflection
= 0 → TP is a point
Step 6: Determine the y co- ord of the optimum solution found in step 5: f(x)|x = x co − ord Step 7: present answer as: The function equation is max/min when x = x co − ord. The max/min value is y = y co − ord.
INDEFINITE INTEGRAL
COMMON INTEGRALS
• ∫x dx
Equation Integral The answer will be an equation and remember
∫xndx to put a ‘+c’ at the end.
DEFINITE INTEGRAL
• ∫ x dx
n xn+1 + 1
+ c [n ≠ −1]
∫f'(x)×[f(x)]n dx
[f(x)]n+1 n + 1
+ c [n ≠ −1]
b a Where:
∫ ef(x) dx
• a – lower bound
• b – upper bound The answer will be a single number (all other variables are eliminated).
f′(x) ef(x)
+ c
∫
f'(x) f(x)
dx ln(f(x)) + c
∫sin(x) dx −cos(x) + c
∫cos (x) dx sin(x) + c
RECTILINEAR RULES
• Change in displacement between times a and b: ∫ a b
v dt
• Distance travelled between times a and b: ∫ a b
|v| dt
• Object changes direction whenever v = 0
• Object returns to the starting position whenever s = 0
FUNDAMENTAL THEOREM OF CALCULUS
•
dx d
(∫ a x
f(t)dt
) = f(x)
• ∫ a b
f′(x)dx = f(b) − f(a)
A rectangular prism has total surface area of 6480cm2. Its width is x cm, length is 2.5x cm and height is h cm. Determine x that maximises the volume. V = lwh V = (x)(2.5x)(h) SA = 2lw + 2wh + 2hl = 6480 6480 = 5x2 + 7xh
h =
A rectangular box is to be made from a sheet of metal with squares of length x to be cut from the corners. If the sheet of metal is 65cm wide and 100cm long, determine the value of x that will maximise the volume of the box. V = lwh → There are 4 variables in this equation, we need to eliminate 2 variables by substitution: l = 100 − 2x, w = 65 − 2x and h = x V = (100 − 2x)(65 − 2x)x = 4x3 − 330x2 + 6500x dV dx
x = −20.7846,20.7846 Lengths can’t be 0. Hence x = 20.7846 gives max volume.
Substituting x = 20.7846 into V, max volume is 32067.68m3
d dx
= 12x2 − 660x + 6500
Solving for when
x x
x x
6480 − 5x2 7x
∴ V = (x)(2.5x)(
dV dX
= 0: x = 12.85,42.15
d
x
x
x
x
100
6480 − 5x2 7x
2
dx
V
@x = 12.85 = −351.6 ∴ maximum
d
)
dV dx
2
2
dx Sub V 2
@x x = 42.15 = 351.6 ∴ minimum
= 12.85 to find max V = 37522cm3 ∴ The volume is maximised when x = 12.85cm. The maximum volume is 37522cm3.
−75x2 =
14
+
16200 7 Solving for when
dV dx
= 0
AREA UNDER A CURVE USING RECTANGLES
• Area under a curve is determined by the definite integral but can be estimated using rectangles.
• Estimate of area between x = a and x = b is: (Overestimate + Underestimate)/2
Estimate area between x = 2 and x = 9 of y = 0.2x2
2 3 4
5 6 7 8 9 Overestimate: 0.2(2)2 + ⋯ + 0.2(9)2 = 56.8 Underestimate: 0.2(1)2 + ⋯ + 0.2(8)2 = 40.8 Estimate Area: 56.8 + 2
40.8
= 48.8
(a) Part of the curve f(x) = x2 − 3 is shown below. A value of k exists such that the area of the region marked A is equal to the area of the region marked B. Determine value of k as an exact number.
Area A = |∫ 0 3
x2 − 9 dx
| = 18
Area B = ∫ 3 k
x2 − 9
dx
∴ ∫ 3 k
x2 − 9
dx = 18
g(x) + f(x) = 0 g(x) = −f(x) f(x) − −f(x) = 2f(x) ∫ |f(x) − g(x)|dx Solving for k gives k = 3√3
(b) Define ∫ |f(x)|dx
k 0
k 0
∫ 0 k
|2f(x)|dx
= 2∫ 0 k
|f(x)|dx From Part A = 2(2A) = 4A
in terms of A.
∫ 0 k
|f(x)|dx
= A + B
But A = B so ∫ 0 k
|f(x)|dx
= 2A
B
(c) g(x) is another function
A
k
such that g(x) + f(x) = 0. Use this to show that:
∫ 0 k
|f(x) − g(x)|dx = 4A
.
a v
2 3x (∫ 0
1 2 + − t t
dt
)
d dx
x
3 (∫ √t2 + 1 dt
) sin(x)
sub sin(x) into t:
= √(sin (x))2 + 1
Determine f(x) with the following conditions:
• F(x) = ∫ f(t)dt
F(x) formula to solve for c: F(3) = ∫ f(t)dt
Sub 3x2 into t:
Sub x3 into t:
Multiply by the
=
= √(x3)2 + 1
derivative of sin (x):
= √x6 + 1
= cos (x)√(sin (x))2 + 1
Multiply by the
Subtract the 2nd answer
derivative of x3:
from the 1st answer:
= 3x2√x6 + 1
= 3x2√x6 + 1
Repeat steps 1 and 2:
− cos (x)√(sin (x))2 + 1
x
0
3
= 5
0
5 = ∫
•
3
t
2
• F(3) d dx2 2
F
= = x 5.
+ 5
Using 0
ClassPad 2
to solve: c = −7.33 ∴ f(x) =
+ 5t + c dt
1 + 3x2 2 − 3x2 Multiply by the derivative of 3x2:
dF dx
= 6x (
t
2 2
+ 5t − 7.33
Tip: If you are getting stuck on these harder questions, break down all of the derivatives given in terms of f(x) and dy/dx.
QUESTIONS WITH FUNCTIONS AS LIMITS Step 1: sub the limits into t. Step 2: multiply the answer by the derivative of the limit. (Note: for questions with 2 limits, do steps 1 and 2 twice).
= f(x)
Hence Integrating d dx2 2
F
= f′(x) f′(x) to = get x + f(x):
5
f(x) = ∫x + 5dx =
1 2 + − 3x2 3x2
)
=
2 x
2
+ 5x + c
As
6x + 18x3 2 − 3x2
dF dx
= f(x), we can use the
Integrate
Differentiate
G
s
9 f(x) is shown: A C
(a) ∫ −10 9
Determine ∫ −10
f(x)dx f(x)dx
= A − B + c = 6
(d) Determine
∫ −10 −5
f(x) − 2dx (b) Determine ∫ 3f(x)dx
= ∫ f(x)dx B
Roots are −10, −5 and 9.
9 0 ∫ 3f(x)dx = 3×C = 9
−5
• A = 4
9 0
−10
− ∫ −5
2dx
• B = 1
(c) Determine ∫ f(x)dx
• C = 3
−5 9 = −∫ f(x)dx = −C + B = −2
−10 = A − [2x]
−5 −10 = 4 − 10 = −6
Determine the volume between the curves f(x) = ln (x) and g(x) = (x − 4)2 Step 1: Determine the points of intersection between the two curves by solving. f(x) = g(x) → ln(x) = (x − 4)2 x = 2.96,5.29
9 −5
Step 2: pick a number between the two solved x values (e.g. 4) and substitute it into both equations to determine the upper function. f(4) = 1.39 and g(4) = 0 Hence f(x) is the upper curve and g(x) is the lower curve.
Step 3: determine the integral that calculates the area between two curves ∫ a
b
upper curve −
b a
using: ∫ lower curve b = ∫ f(x)dx −
Note: the limits are the same for both
a
integrals. b ∫ g(x)dx
5.29
a
= ∫ ln(x)dx −
2.96
5.29 ∫ (x − 4)2dx
2.96
= 2.18
(b) Find the formula for acceleration.
a =
dt d
(v)
a a =
= dt
−6t d
(−3t2 − 2
− 2t + 5)
(a) Acceleration of a body is a = 49 − 8t where motion is measures in m/s. After 5 seconds the particle is instantaneously stationary. Find the formula for velocity.
v = ∫a dt
(b) Find the distance v = ∫49 − 8t dt
travelled in the first 10 v = 49t − 4t2 + c
seconds. 0 = 49(5) − 4(5)2 + c Solve for c: c = −145
= ∫ |59t − 4t2 − 145| dt
∴ v = 59t − 4t2 − 145
A body has initial displacement of 10m and velocity v = t2 + 3t. Find the displacement when it has velocity of 63m/s?
Solve 63 = t2 + 3t → t = −9.58,6.58
s = ∫v dt = ∫t2 + 3t dt =
t
3
3
+
3t 2
2
+ c
10
10 =
(0) 3
3
+
3(0)
2
2
+ c → c = 10
0 = 578.13 metres
∴ s =
t
3 3
+
3t 2
2
+ 10 and s(6.58) = 169.9m
DOUBLING TIME Time taken for amount to increase by 100% (i.e. A = 2A
0
x d dx
(∫ t2dt
) 0 = x2
d dx
x
0
)
= ln (x)
d dx
(∫ ln(t)dt
x (∫ e2tdt
) 0 = e2x
d dx
x (∫ √tdt
) 0 = √x
).
(a) The temperature of the south pole over t years has the equation T = A + Be−kt. The initial temp is −50°C and the long term temp is −20°C, find A and B. −50 = A + Be−k(0) → −50 = A + B −30 = A + Be−k(∞) A = −30 and B = −20 (b) Determine k if after 10 years the temperature is −43.5°C −43.5 = −30 − 20e−k(10) → k = 0.0393
Net of Box (corners will be cut and folded)
INTEGRAL RULES
• Swapping limits:
b
a ∫ f(x) =
− ∫ f(x)
• Constant a
in an b
Integral:
∫ axn dx = a∫ xn dx
• Area under a curve that goes below the x-axis:
b ∫ |x| dx
• Area a
between 2 curves:
∫ a
b
upper curve
−
∫ a
b
lower curve
(a) Displacement of a body is given by s = −t3 + at2 + bt + 3 where t is the time in seconds. The body is temporarily at rest when t = 1. The initial velocity is 5 m/s. What is a and b?
(a) The population of a small island is P = 40 − 10e−kt, show that dP/dt = k(P − 40).
dP
Hence, dt
= 10ke−kt dP
& P = 40 − 10e−kt
(b) dP dt
= If dt
= (−P + 40)×k
k(P − 40)
k = 0.02, find the rate at which the pop is changing when the pop is 30. dP dt
= 0.02(30− 40) = −0.2
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(−t3 v =
+ at2 + bt + 3) v = −3t2 + 2at + b When t = 0,v = 5 ∴ b = 5 & v = −3t2 + 2at + 5 0 = −3(1)2 + 2a(1) + 5 ∴ a = −1
6 5
d dt
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ABOUT DRV
• Discrete distributions cover events that can be counted.
• It is only measured in integers (whole numbers).
• For example, counting how many students there are in each class of a school.
CLASSPAD BERNOULLI To find:
• p(x)
• P(a ≤ x ≤ b)
• the value of k given P(X ≤ k) Use the Binomial Distribution commands to the right and set all instances of n to 1.
ABOUT UNIFORM
• A Uniform distribution has constant probability.
• E.g. a volcano erupts every hour. You arrive there at random and wait 30 minutes, what is the chance it erupts?
PROBABILITY NOTATION
• ∪ → Union (or)
• ∩ → Intersection (and)
• | → given
• Á or A → complement
• ∅ → null set
• ∈ → element of
• ⊂ → subset
ABOUT BERNOULLI
• A Bernoulli trial is a binomial distribution with 1 trial.
• A Bernoulli trial has only two possible outcomes, which we may term “success” or “failure.”
• E.g. tossing a coin is a Bernoulli trial: you can either get heads or tails.
ABOUT NORMAL
• Normal distribution has the iconic “Bell Curve” shape which means that data closer to the mean has a higher chance of occurring.
• E.g. finding faults in cars from an entire factory.
(a) Determine the values of a and b in the following discrete distribution if E(X) = 0.20
x 0 1 2 3 4 p(x) 0.85 0.12 a b 0.005 Equation 1: 0.12 + 2a + 3b + 0.2 = 0.2 Equation 2: 0.85 + 0.12 + a + b + 0.005 = 1 ClassPad simultaneous solve: a = 0.015 and b = 0.01
Y is a uniform distribution with a = 1 and b = 5. Determine the value of k in the following equations: (a) P(X > k|X < 3) = 0.5 P(k<X<3) P(X<3)
ANALYSING GRAPHS A graph is suited for L
Binomial if it is either negatively skewed (long left tail) or positively skewed (long right tail). As n increases, graphs become more symmetrical (normal distribution).
The probability of a successful trial is 0.4, how many trials are needed to ensure that the probability of 3 or more successes is exceeds 0.75? X~B(n,0.4) and P(X ≥ 3) > 0.75
Method 1: Using trial and error for different values of n on ClassPad: binomialCDF(3,∞,n, 0.4) → when n = 9,CDF = 0.7682 ∴ 9
Method 2: P(X = Solving ( n 0 ≥ )(0.6)n 4) for > n 0.75 + on ( n 1 ClassPad, = )(0.4)(0.6)n−1 P(X = 0) n + ≈ P(X 9 + (
n = 2
) 1) (0.4)2(0.6)n−2 + P(X = 2) > = 0.75 0.75
ABOUT CRV
Z is a CRV and is graphed
• CRV’s cover events that
on the set of axes below: can be measured.
• Measures with decimal values (exact numbers).
• E.g measuring height of people in a city in cm.
Determine f(z). CRV TYPES
• Uniform Distribution
f(z) = {
• Normal Distribution
8
7
1 b − a
a b
S
(a) Find the probability that a student passes a multi-choice test with 10 questions and 4 options per question by guessing answers? X~B(10,0.25)
P(X ≥ 5) = P(5 ≤ X ≤ 10) = 0.0781
(b) If the class has 15 students, what is the probability that at least 4 pass by guessing? X~B(15,0.0781) P(X ≥ 4) = P(4 ≤ X ≤ 15) = 0.0252
1 5
2x − 2 1 ≤ x ≤ 5 −4x + 28 5 ≤ x ≤ 7 0 elsewhere
FIND P(C ≤ X ≤ D)
∫
X is a uniform distribution
C
D
b − 1
a
dx
with a = 10 and b = 20. Determine the following:
FIND P(X ≥ C|X ≤ D)
∫
(a) P(15)
D
1 C
b − a ∫
dx
D
1 A
b − a
FIND K GIVEN
= 0 (note: singular probabilities
= 0.5 of a CRV is always equal to 0). (b) P(X ≥ 14) X~U(10,20) = ∫
P(k < X < 3) = 0.25 ∴ k = 2 (b) P(X > 2|X < k) = 0.5 P(2<X<k) P(X<k) P(X ≤ K)
∫
dx
K
a
20
1 14
20−10
dx = 0.6 (c) P(X ≥ 14|X ≤ 18)
= 0.5
P(2 < X < k) = 0.5P(X < k) b − 1
a
dx = P(X ≤ K)
= ∫
14
18
20−10 1
18
1 10
20−10 dx/ ∫
dx =
0.5
Using trial and error for values of k: k = 3
NORMAL NOTATION X~N(μ, σ2) where:
• μ – mean
• σ – S.D.
NORMAL RULES
• E(X) = μ
• Var(X) = σ2
• σ = σ
CRV RULES
• ∫p(x)dx = 1
• f(x) ≥ 0
• P(X > a) = P(X ≥ a)
• P(X = a) = 0
• P(a ≤ X ≤ b) = ∫ b
p(x)dx
• • E(X) Var(X) = ∫ = −∞ ∞
∫ −∞ ∞ xp(x)dx (x − a
μ)2p(x)dx where μ = E(X)
UNIFORM NOTATION X~U(a,b) where:
• a – lower bound
• b – upper bound
UNIFORM RULES
• f(x) =
b−a 1
• E(X) =
1 2
(a + b)
• Var(X) =
12 1
(b − a)2
• σ = √
12 1
(b − a)2
• p(x) = 0
PROBABILITY RULES
• 0 ≤ P(A) ≤ 1
• P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
• P(A|B) =
P(A∩B) P(B)
or P(B|A) =
P(A∩B) P(A)
• P(A) = P(Á) = 1 − P(A)
• For independent events: P(A ∩ B) = P(A)×P(B)
E
BERNOULLI NOTATION X~B(p) where:
• p – probability of success
BERNOULLI RULES
• p(x) = {
1 − p p for x = 1 for x = 0
• E(X) = p
• Var(X) = p(1 − p)
• σ = √p(1 − p)
If E(X) = 5 and Var(X) = 2 (a) Determine E(X + 11) = E(X) + 11 = 5 + 11 = 16
(b) Determine E(1 − 2x) = 1 − 2E(X) = 1 − (2×5) = −9 (c) Determine Var(3X + 1) = 32Var(X) = 9×2 = 18
DRV TYPES
• Bernoulli Distribution
• Binomial Distribution DRV RULES
• ∑p(x) = 1
• 0 < p(x) < 1
• E(X) = ∑ i
p
i
x i • Var(X) = ∑ p
(x
− μ)2 D
i i
i
I
C
L
A
S
S
P
A
(a) The chance of an apple being rotten in a delivery is 0.1. Find the probability that of 6 apples, 1 is rotten. = 0.95×0.1 = 0.0590
(b) Find the probability that exactly one of six apples chosen from the box are found to be rotten. X~B(6,0.1) = P(X = 1) = 0.3543
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FIND P(X) binomialPDF(x,n,p) Where:
• binomialPDF is found in Main App → Action → Distribution → Discrete
• x is the number of successful trials.
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FIND P(A ≤ X ≤ B) normCDF(A, B,σ,μ) Where:
• normCDF is found in Main App → Action → Distribution → Continuous
FIND K GIVEN P(X ≤ K) invNormCDF("TS",P(X ≤ K),σ,μ) Where:
• invNormCDF is found in Main App → Interactive → Distribution → Inverse
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(a) X is a binomial variable. Determine the value of parameters n and p if E(X) = 21 and Var(X) = 6. 3. E(X) = 21 = np & Var(x) = 6.3 = np(1 − p) ClassPad simultaneous solve: n = 30 and p = 0.7 (b) Determine P(X ≥ 10|X ≤ 15) X~B(30,0.7)
=
P(X ≥ P(X 10 ≤ ∩ 15)
X ≤ 15)
P(10 ≤ X ≤ 15) P(X ≤ 15) = 0.9996
X is a CRV. It is known that P(X > 5) = 0.6 and X has a probability density function of:
f(x) = {
=
Y is a CRV and has a probability density function of:
ax + b 0 ≤ x ≤ 10 0 elsewhere Determine the values of a and b.
f(y) = {
2y2 0 + 3 0 ≤ x ≤ 2 elsewhere Determine E(Y) and Var(Y).
Equation 1: ∫ 0
10
ax + bdx = 1
Equation 2: ∫ 5
10
ax + bdx = 0.6 ClassPad simultaneous solve:
E(Y) = ∫ 0 2
(y)(2y2 + 3)dy E(Y) = 14 Var(Y) = ∫ (y − 14)2(2y2 + 3)dy
a = 0.008 and b = 0.06
2 0 Var(Y) = 1850.1333
FIND P(A ≤ X ≤ B) binomialCDF(A,B,n,p) Where:
• binomialCDF is found in Main App → Action → Distribution → Continuous
• A is the lower bound.
• B is the upper bound.
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ABOUT BINOMIAL
• A Binomial distribution is when you perform more than 1 independent Bernoulli trial.
• The Binomial distribution counts the number of success in an experiment with trials.
• For example, tossing a coin repeat times and counting the number of heads flipped.
X
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(a) Is the following distribution discrete? x -1 0 1 2 p(x) 0.3 0.2 0.1 0.4 Yes, as all probabilities add to 1. (b) Is the following distribution discrete? x 0 1 2 3 p(x) -0.1 0 0.5 0.6 No, as p(x) cannot be negative.
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EXPECTED VALUE AND VARIANCE
• E(X) = μ = Expected Value
• Var(X) = Variance
• √Var(X) = S.D.
Comparing E(X) and Var(X)
• Var(X) = E(X)2 − [E(X)]2
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FIND K GIVEN P(X ≤ K) invBinomialCDF(P(X ≤ k),n, p) Where:
• invBinomialCDF is found in Main App → Action → Distribution → Inverse
• n is the number of trials.
• p is the probability of success.
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BINOMIAL NOTATION X~B(n,p) where:
• n – number of trials
• p – probability of success BINOMIAL • p(x) = ( n x
RULES )(p)x(1 − p)n−x
• E(X) = np
• Var(X) = np(1 − p)
• σ = √np(1 − p)
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EFFECTS OF LINEAR CHANGE If X is a random variable and Y = aX + b then:
• E(X) = aE(X) + b
• Var(X) = a2Var(X) Where a and b are constants.
Z-SCORE
• Z~N(0,1) Where: Z =
X−μ σ Z-Scores simplifies all normal distributions to a mean of 0 and a S.D. of 1. Z-scores indicate how many S.D.’s away from the mean each score is.
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BERNOULLI VS. BINOMIAL
• If the number of trials is equal to 1, the distribution is Bernoulli.
• If the number of trials is more than 1, the distribution is Binomial.
B
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CONFIDENCE INTERVAL RULES
• (p̂ − Z√
p̂(1−p̂) n
, p̂ + Z√
p̂(1−p̂) n
)
• p̂ ± E Where:
• Z → Z-Score for a given confidence interval (refer to table below for common z-scores):
% Confidence Interval
Z-Score
99% CI 2.58 95% CI 1.96 90% CI 1.645
Custom confidence interval: z
c
= −1× invNormCDf("C", c, 1, 0) Where: c → CI% as a decimal
If X~N(μ,σ2) such that the mean is twice the variance and P(X > 10) = 0.3. Find μ and σ. μ = 2σ2,∴ X~N(2σ2,σ2). Note: use Z-Scores. invNormCDf("L",0.3,1,0 ) = 0.5244
Z =
X − σ
μ
, 0.5244 =
10 σ
− μ
,0.5244 =
10 − σ
2σ2
solve(0.5244 =
10−2σ
σ
2
) σ = 2.11 or − 2.37 and μ = 2(2.11)2 = 8.89
6
C
CENTRAL LIMIT THEOREM RULES
• Regardless of the original distribution, if the number of independent random samples of the experiment is a large number (n ≥ 25), the data can be modelled using a normal distribution.
ORIGINAL DISTRIBUTION IS UNKNOWN
• As n ≥ 25, the distribution becomes normal with the following parameters:
o Mean stays the same: X̅ o Standard Deviation changes to:
√n σ
ORIGINAL DISTRIBUTION IS BERNOULLI
• As n ≥ 25, the distribution becomes normal with the following parameters:
o Mean stays the same: p
o Standard Deviation changes to:√
p(1−p) n SAMPLE NOTATION
• μ and p are statistics of the original population.
• X̅ and p are statistics of the sample population.
MARGIN OF ERROR RULES
• E = Z√
p̂(1−p̂) n
• E ∝
√n 1
CHANGING CONFIDENCE INTERVALS If you are changing the confidence interval of a question (i.e. you are given a 95% CI and you need to determine a 99% CI), follow these steps:
Step 1: determine p: p =
lower bound + 2
upper bound
Step 2: determine E: E = upper bound − p Step 3: determine E
new
: E
new
=
z z
new
old
×E
Step 4: determine new confidence interval: New CI = p ± E
new
QUANTILE (a) The time in hours that a brand of light globe operates before going out
RULES is normally distributed with a mean of 9000 hours and a standard
• P(X < t
a
) = a where: 0 < a < 1 deviation of 450 hours, what is the probability of a light globe lasting more
• The ath percentile is the score that than 8000 hours given that it does not last more than 10000 hours?
a% of the population lies below. X~N(9000,4502) → P(X ≥ 8000|X ≤ 10000) =
P(8000≤X≤10000) P(X≤10000)
= 0.9867
(b) Determine how many life hours are exceeded by 55.6% of all light
Percentile Probability
25th P(X < t
a
) = 0.25 globes.
50th P(X < t
a
) = 0.50 P(X < k) = 0.556 → invNormCDF("L",0.556,450,9000) = 9063.3759 hours
75th P(X < t
a
) = 0.75
Z-SCORE FOR AN UNKNOWN DISTRIBUTION
Z =
X̅ − σ
μ
√n
Z-SCORE FOR A BERNOULLI DISTRIBUTION
Z =
√
p̂(1 p̂ − n − p
p̂)
NATURE AS N CONTINUES TO INCREASE
• As n → ∞, the distribution approaches the standard normal distribution.
(a) In one particular store, 18% of pizzas are overcooked. In a sample of 150 pizzas, describe the distribution and state the mean and standard deviation.
p = 0.18 and s = √
(a) 23% of Australians are left handed. If a sample of 40 Australians are surveyed, what proportion of these samples are expected to contain less than 20% of left-handers?
0.18(1−0.18) 150
= 0.0314
Hence, p~N(0.18,0.03142)
p~N(p, s2) where p = 0.23 and s = √
0.23(1−0.23) 40 p~N(0.23,0.06652) and P(p < 0.2) = 0.3257 (b) Determine the probability that a
(b) What proportion of these samples are point estimate for the proportion of
expected to contain between 10% and 15% of overcooked pizzas exceeds 0.21.
left-handers? P(p > 0.21) = 0.1697
P(0.10 < p < 0.15) = 0.0892
• Calculate the width of a confidence interval: Width = 2E
What is the margin of error on a 99% confidence interval of (0.25,0. 32)?
E =
Note: p does not have to 0.32 − 2
0.25
= 0.035
be given to determine the margin of error.
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CONTINUITY CORRECTION RULES
• When using a discrete distribution and n ≥ 25, it can be modelled using a normal distribution (continuous).
• When changing from a discrete distribution to a continuous distribution, the probabilities you calculate change slightly according to the table:
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A 90% Confidence Interval is (0.38,0.45). Determine a 95% Confidence interval.
p =
0.38 + 2
0.45
= 0.415
E = 0.45 − 0.415 = 0.035
E
new
=
1.645 1.96
×E = 0.0417
95% CI = 0.415 ± 0.0417 = (0.3733,0.4567)
How many times larger is the margin of error of a sample of 1225 compared to a sample of 11025? E ∝
√1225 1
1 35
E ∝
=
∴ 3 times
1 √11025
=
105 1
as large.
(a) In a random sample of 400 people, 129 we male. Calculate a 90% confidence interval. p =
129 400
= 0.3225
90% CI = 0.3225 ± 1.645√
0.3225(1−0.3225) 400 90% CI = (0.2898,0.3552) (b) What is the largest size sample of people that would have to be taken in order for a width of a 99% confidence interval to be 0.1 or less?
E = z√
p(1 n
− p)
→
0.1 2
= √
0.3225(1 n
− 0.3225)
Solving for n: n = 87.3975 ≈ 88 people are needed.
Q
U
A
N
T
I
L
E
S
Discrete Continuous P(X = k) P(k − 0.5 < X < k + 0.5) P(X > k) P(X > k + 0.5) P(X ≥ k) P(X > k − 0.5) P(X < k) P(X < k − 0.5) P(X ≤ k) P(X < k + 0.5)
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